
New CAL Functions
in Dynamics NAV 2017

Introduction

Assisted Setup

Page Wizard

Working With Media on Records

Task Scheduler

Notifications

Time Series API

Resources / Help

Assisted Setup

Assisted Setup

Assisted Setup

• How does it work?
• Table 1803 Assisted Setup

Assisted Setup

Page Wizard

Page Wizard

• How to create a Wizard page?

Page Wizard

test for all
devices

add
image
header

add
navigation

add steps
create a

new page

Page Wizard

Create a new page

Create a new page of
type NavigatePage

Page Wizard

Add steps

Add groups

• each representing
a wizard step

Add content

• to each group

Page Wizard

Add
navigation

Add actions

• to facilitate
navigation

Page Wizard

Add an Image
Header

Add a Media field

• to show an
informative picture

Page Wizard

Test for all
devices

Test the Phone, Tablet and Web clients

• http://localhost:8080/DynamicsNAV100/WebClient/

• http://localhost:8080/DynamicsNAV100/WebClient/tablet.aspx

• http://localhost:8080/DynamicsNAV100/WebClient/phone.aspx

http://localhost:8080/DynamicsNAV100/WebClient/
http://localhost:8080/DynamicsNAV100/WebClient/tablet.aspx
http://localhost:8080/DynamicsNAV100/WebClient/phone.aspx

Working With Media on Records

Working With Media on Records

You can upload media files

• such as images, to the database

• for displaying with records in the client.

Use a BLOB data type

• You add the media file to a BLOB data type field.

Use a Media or MediaSet data type

• enables you to store media objects (images) in system tables

• and then reference the images from application records.

Working With Media on Records

• For Web client and Universal App
• use this method to display images with records in list type pages

• when the page is viewed in the Brick layout

Working With Media on Records

• Using the Media or MediaSet data type
• provides better performance than using a BLOB data type

• and is more flexible in its design.

• With a BLOB data type
• each time the media is rendered in the client, it is retrieved from the SQL

database server,

• which requires extra bandwidth and affects performance.

• With the Media and MediaSet data types
• the client media ID to cache the media data,

• improves the response time for rendering the media.

Working With Media on Records

• Using Media and Media Sets on Records:
• Table fields support two data types for media: Media and MediaSet.

• Media associates a record with a single media file.
• For example, to display an image with each record in a list type page.

• MediaSet associates a record with one or more media files
• which lets you set up a collection or catalogue of media for a record.

• use this function to set up a slide show of images in a card type page.

Working With Media on Records

• You can add media to the record
• either from a file or passed in an InStream object.

• Media is imported and then stored as objects
• in the system table 2000000184 Tenant Media

• of the application database

• and each media object is assigned a unique identifier
• (ID).

Working With Media on Records

• If a media is added to a Media data type field
• the field references the media by its ID.

• If the media is added to MediaSet data type field
• the media file is assigned to a media set in system table 2000000183 Tenant

Media Set.

• has a unique identifier, which is referenced from the field.

• is created with the first file that you add on the record.

• Any additional media files for the record are then associated with the same
media set.

Working With Media on Records

• Supported Media Types:
• The media type, sometimes referred to as the MIME type, is an Internet

standard to describe the contents of a file.

• Currently, Microsoft Dynamics NAV only supports image type
• more specifically, only those image subtypes that are supported by the

System.Drawing.Image class of the .NET Framework.

Working With Media on Records

Obtain the media
file or files that

you want to use on
record.

Modify the table
object to include a
field that has the

data type Media or
MediaSet.

Add C/AL code
that imports the

media on the field.

The Media and
MediaSet data
types support
several C/AL
functions.

Working With Media on Records

• Media
• IMPORTFILE Function (Media)

• Sets up an image on a record from a file.
• The media file is imported to the application database.

• IMPORTSTREAM Function (Media)
• Sets up an image on a record from an InStream object.
• The media file is imported to the application database.

• HASVALUE Function (Media)
• Detects whether a record has a media object in the Media data type field.

• MEDIAID Function (Media)
• Gets the unique identifier (GUID) that is assigned to the media object in the application database.

• EXPORTFILE Function (Media)
• Exports a media object that is set up on a record to a file.

• EXPORTSTREAM Function (Media)
• Exports a media object that is set up on a record to an OutStream object.

Working With Media on Records

Working With Media on Records

Working With Media on Records

• MediaSet
• IMPORTFILE Function (MediaSet)

• Sets up an image on a record from a file and assigns the image to a media set.
• The media file is imported to the application database.

• IMPORTSTREAM Function (MediaSet)
• Sets up an image on a record from an InStream object and assigns it to a media set.
• The media file is imported to the application database.

• MEDIAID Function (MediaSet)
• Gets the unique identifier (GUID) that is assigned to the media set on a record.

• COUNT Function (MediaSet)
• Gets the total number of media objects that are included in the media set on a record.

• EXPORTFILE Function
• Exports the media objects that included in a media set to individual files.

Working With Media on Records

Working With Media on Records

Working With Media on Records

Working With Media on Records

• DEMO

Task Scheduler

Task Scheduler

• Task Scheduler is the new platform engine that runs Jobs Queues.

• Before
• all of the Job Queues were handled in AL and were either started through

NAS or directly from the client.

• AL approach had loopy logic for each Job Queue awaiting new jobs to arrive,
keeping sessions open for a long time.

Task Scheduler

• The problem was
• when something out of AL expected behavior failed, like a network outage

making a SQL error or similar

• then the error would shut down the queue

• requiring it to be restarted.

Task Scheduler

• The new implementation supports
• restart of jobs

• tolerance for transient errors

• amount of parallelism
• including distribution between multiple NST and more.

Task Scheduler

• Or simply continue to use Job Queue entries in Madeira
• since the Job Queues now runs on the new engine.

• The old NAS is only there
• if people upgrade an application

• and still need the feature

• until they have upgraded the application.

Task Scheduler

• a new system table named "Scheduled Task"

• a new set of C/AL commands like
• TASKSCHEDULER.CREATETASK,

• TASKSCHEDULER.CANCELTASK, etc.

• basically insert/delete entries from the "Scheduled Task" table.

Task Scheduler

• The trick is, that the system now knows
• who created the task

• and then also knows that the task should be run with that user's permissions.

• The existing job queue functionality has been modified
• so it runs on top of this new mechanism

• and consequently, it doesn't need the Job Queue table for anything.

Task Scheduler

• Categories are still supported
• the execution mechanism will make sure that only one job with a certain

category is executed at the same time.

• Priorities are not supported for now
• it's first-in-first-out.

• In the server configuration you will notice that a new tab has arrived:
• TaskScheduler that allows you to turn the feature on or off for a specific NST

and how many concurrent tasks can be executed.

• What this means is that you can now configure one NST to serve users and
another one for background jobs.

Task Scheduler

• And more:
• The default configuration is that the feature is turned on

• you don't need to configure any job queues to make background jobs work.

• Also, it doesn't keep any threads alive on the server when there is nothing to do.

• In case of server restart
• the background execution will just resume automatically

• after a few minutes

• as the NST's may need to synchronize

• and figure out who should run an aborted job.

Task Scheduler

• And more:
• Use categories for serializing certain jobs, e.g. posting jobs to avoid lock

timeouts (and deadlocks).
• When a job is started, it checks if it has a category code.

• If so, it checks if there is any other job running right now with the same category.

• If so, the job will reschedule itself for some seconds later.

Task Scheduler

• The task scheduler enables you to control when certain operations or
processes (in other words tasks) are run.
• A task is a codeunit or report that is scheduled to run at a date a time.

• Tasks run in a background session between the Dynamics NAV Server
instance and database.
• Behind the scenes, the task scheduler is used by the job queue to process job

queue entries that are created and managed from the clients.

Task Scheduler

• Functions that are available for the TASKSCHEDULER data type:
• CREATETASK

• Adds a task to run a codeunit at a specified date and time.

• SETTASKASREADY
• Sets a task to the Ready state. A task cannot run until it is Ready.

• TASKEXISTS
• Checks whether a specific task exists.

• CANCELTASK
• Cancels a scheduled task.

Task Scheduler

• To set up a task
• Create a codeunit that contains the logic that you want to schedule.

• you can create a second codeunit (referred to as a failure codeunit)

• that contains the logic to handle the task if an error occurs for any reason.

• Once you have the codeunits
• you can add C/AL code to the application

• that calls the CREATETASK function

• to schedule a task to run the codeunits.

• The CREATETASK function
• can also specify the earliest date to run the task

• and whether the task is in the ready state.

Task Scheduler

After you add a task

• task is recorded in table 2000000175
Scheduled Task.

If the task is in the ready state
when the scheduled time occurs

• a new background session is started

• and the task codeunit is run.

• view the session in the table
2000000111 Session Event.

If an error occurs:

If a failure codeunit is not
specified

• then the retry flow is initiated.

If a failure codeunit has been
specified

• the error is passed in a call to the
failure codeunit

• and the failure codeunit is run.

If the failure codeunit does not
handle the error or fails itself

• then the retry flow is initiated.

Task Scheduler

A task can fail under the following conditions:

• The company cannot be opened.

• An SQL connection or transient error occurred with the database.

• The Dynamics NAV Server instance restarted while the task was
run.

You can view these errors in the event log

• of the computer that is running the Dynamics NAV Server instance.

Task Scheduler

• When an error occurs:
• unless the task is interrupted by the failure codeunit

• the Dynamics NAV Server instance will rerun the task

• according to the following retry flow:
1. Two minutes after the first failure.

2. Four minutes after the second failure.

3. Fifteen minutes after the third failure

4. and any subsequent failures up to a maximum of 10 times,

5. after which the task is cancelled.

Task Scheduler

• The task runs in a background session, which means that there is no
user interface.
• the behavior is similar to that of the STARTSESSION function

• where any dialog boxes that would normally appear are suppressed.

• The session runs by using the same user/credentials that are used
when calling C/AL code.
• The user must have appropriate permissions to the codeunit and any other

objects that are associated with the operation of the codeunit.

Task Scheduler

Task Scheduler

Task Scheduler

Exists := TASKSCHEDULER.TASKEXISTS(Task)

[Task :=] TASKSCHEDULER.CREATETASK(CodeunitId, FailureCodeunitId
[, IsReady] [, Company] [, NotBefore] [, RecordID])

[Ok :=] TASKSCHEDULER.SETTASKREADY(Task [, NotBefore])

[Ok :=] TASKSCHEDULER.CANCELTASK(Task)

Task Scheduler

• Example:
• CU 453 Enqueue

JobQueueEntry."System Task ID" :=

TASKSCHEDULER.CREATETASK(

CODEUNIT::"Job Queue Dispatcher",

CODEUNIT::"Job Queue Error Handler",

TRUE,

COMPANYNAME,

JobQueueEntry."Earliest Start Date/Time",

JobQueueEntry.RECORDID);

Notifications

Notifications

• The new Notification C/AL type
can be used to
• notify and guide users
• with a subtle message
• is displayed at the top of a page.

• Developers have
• full control over the context in

which notifications are shown,
• can withdraw notifications,
• and may include one or more

custom actions.

Notifications

• Notifications provide
• a programmatic way

• to send non-intrusive information

• to the user interface (UI)

• in the Dynamics NAV Web client.

• Notifications differ from messages
• initiated by the MESSAGE function.

Notifications

• Messages are modal
• which means users are typically required to address the message and

take some form of corrective action before they continue working.

• Notifications are non-modal.
• Their purpose is to give users information about a current situation,

• but do not require any immediate action or block users from
continuing with their current task.

• For example,
• you could have a notification that a customer's credit limit is exceeded.

Notifications

Notifications

• Notifications in the UI
• In the UI, notifications appear in the Notification bar

• (similar to validation errors)

• at the top of the page on which a user is currently working.

• The user can then choose to dismiss the notification, which clears it.
• Or if actions are defined on notification

• the user can choose one of the actions.

Notifications

• There can be multiple notifications.
• The notifications appear chronological order from top to bottom.

• Notifications remain
• for duration of the page instance

• or until the user dismisses them or takes action on them.

• Notifications that are defined on sub-pages,
• for example in parts and FactBoxes,

• appear in the same Notification bar.

• Validation errors on the page will be shown first.

Notifications

In the development environment:

•Use the

•Notification and NotificationScope

•data types and functions

•Add code to send notifications to users.

Notifications

• Specifies the content of the notification that appears in the UI.MESSAGE

• Specifies the scope in which the notification appears.SCOPE

• Sends the notification to be displayed by the client.SEND

• Adds an action on the notification.ADDACTION

• Sets a data property value for the notificationSETDATA

• Gets a data property value from the notification.GETDATA

• Recalls a sent notification.RECALL

Notifications

• Creating and sending a notification
• You create a notification by using

• the MESSAGE and SEND functions.

• The MESSAGE function
• defines the message part of the notification.

• When the SEND function is called
• the notification is sent to the client

• and content of the message is displayed.

Notifications

MyNotification.MESSAGE := 'This is a notification';

MyNotification.SEND;

• The SEND function call should be the last statement in the
notification code,
• after any ADDACTION or SETDATA function calls.

Notifications

The scope is

•the realm in which a notification is broadcast in
the client.

There are two different scopes:

•LocalScope and GlobalScope.

Notifications

A LocalScope notification

• appears in context of the user's current task,

• that is, on the page the user is currently working on.

• LocalScope is the default.

A GlobalScope notification

• is not directly related to the current task.

• Note: GlobalScope is currently not supported, so do not use it.

• This will be implemented in a future release.

Notifications

• The following code creates a notification in the LocalScope:

MyNotification.MESSAGE := 'This is a notification';

MyNotification.SCOPE := NOTIFICATIONSCOPE::LocalScope;

MyNotification.SEND;

Notifications

• You add actions on notifications by using the ADDACTION:
• Provides a way for you to create interactive notifications.
• By default, users have the option to dismiss the notifications.

• However, there might be cases where you want to provide users with
different actions to address the notification:
• like opening an associated page for modifying data.

• A notification action:
• calls a function in a specified codeunit,

• passing the notification object in the call.

• function includes the business logic for handling the action.

Notifications

MyNotification.MESSAGE := 'This is a notification';

MyNotification.SCOPE := NOTIFICATIONSCOPE::LocalScope;

MyNotification.ADDACTION('Action 1',CODEUNIT::"Action Handler",'RunAction1');

MyNotification.ADDACTION('Action 2',CODEUNIT::"Action Handler",'RunAction2');

MyNotification.SEND;

Notifications

The basic steps for
adding an action are as

follows:

Create a global
function in a new or

existing codeunit.

The function must have
a Notification data type
parameter for receiving
the notification object.

Add C/AL code to the
function for handling

the action.

Specify the codeunit
and function in the

ADDACTION function
call.

Notifications

You can have more than
one action on a
notification.

• A LocalScope notification

• can have up to 3 actions.

• A GlobalScope notification

• can have up to 2 actions.

Notifications

You use the SETDATA and GETDATA functions

• to add data to a notification,

• which is typically needed when actions are invoked.

The SETDATA function

• sets, or adds, data to the notification.

• the data is defined as text in a key-value pair.

With the GETDATA function

• you can then retrieve the data again.

Notifications

Notifications

• DEMO:

Notifications

Notifications

Notifications

Notifications

Time Series API

Time Series API

• Dynamics NAV 2017 enters the world of machine learning and the first
step of this journey is to bring the Time Series API to NAV Developers.

• Let me start with a short explanation of what machine learning (predictive
analytics) means in general.

• The current way of building software is:
• A smart guy creates an algorithm.

• A user inputs some value,

• The system applies the algorithm and returns some results.

Time Series API

• To create a good algorithm
• you must be a domain expert

• and have deep knowledge of a specific industry.

• The worst part here is that
• someone must update the algorithm programmatically

• or by changing the setup

• on a regular basis to adapt to changeable business processes.

Time Series API

• Machine learning helps you do things in a different way:
• It takes historical data, automatically analyzes it in different ways, and then

tries to find the algorithm by itself.
• (Model or Experiment in Azure ML)

• The user inputs some value, system applies the model and returns results.

• The system uses the new user input to adjust the model.

Time Series API

• Actually, this is not completely true
• because if the system tries to analyze the incoming data in different ways, it

will be very expensive.

• Each attempt requires significant computation efforts.

• That is why this approach is not used.

• Instead, the domain expert helps the system
• by advising between the available algorithms,

• and system does the rest of the work.

Time Series API

• One of the most popular topics for machine learning is forecasting based
on historical data.
• Many algorithms that can do this.

• We chose five of these algorithms,
• wrapped them in one Azure ML experiment,
• added logic that compares different results
• and returns the best one
• accompanied by an indicator of the prediction’s quality.

• There is a generic API on top of this
• that allows Dynamics NAV developers create their own functionality
• that helps customers find the business-critical information
• that may be hidden in their database.

Time Series API

• This is the best API for the following reasons:
• The current implementation does not require you to re-train the model

• as this is done when the request is submitted.

• More than 300 tables contain both Date and Decimal fields in Dynamics NAV.
• This is the most typical table structure in business applications (28%)

• They are good candidates for analysis with a Time Series API.

Time Series API

Time Series API

Time Series API

create a
model

publish end
point

get
predictions

use the
information

Time Series API

• Create a model
• time-series predictions model:

• https://gallery.cortanaintelligence.com/Experiment/Dynamics-Ax7-demand-forecasting-1

• open in Azure Machine Learning studio

• copy experiment to your workspace

• validate the experiment

https://gallery.cortanaintelligence.com/Experiment/Dynamics-Ax7-demand-forecasting-1

Time Series API

• Publish an end point
• deploy web service

• API key

• request URI

Time Series API

• Get predictions
• call the Time Series API from the development environment

• to get predictions on different data

• check the quality of the predictions programmatically

Time Series API

• Time Series Library:
• Initialize

• set up the connection

• PrepareData
• transforms any table data into a dataset

• Forecast
• calls the Azure ML

• GetForecast
• returns a dataset of forecasted values

Time Series API

• Use the information
• create a purchase order

Time Series API

• DEMO

Resources

Resources

• https://aka.ms/NavGetReady

Microsoft Dynamics NAV Get Ready Page on Partner Source

• https://aka.ms/DynamicsLearningPortal

Microsoft Dynamics Learning Portal

• https://msdn.microsoft.com/en-us/dynamics-nav/index

Developer and IT-Pro Help for Microsoft Dynamics NAV

• https://www.youtube.com/playlist?list=PL5B63EF419A3B59C8

How Do I Video’s:

https://aka.ms/NavGetReady
https://aka.ms/DynamicsLearningPortal
https://msdn.microsoft.com/en-us/dynamics-nav/index
https://www.youtube.com/playlist?list=PL5B63EF419A3B59C8

Review

Assisted Setup

Page Wizard

Working With Media on Records

Task Scheduler

Notifications

Time Series API

Resources / Help

Summary

• Steven Renders
• Steven.Renders@thinkaboutit.be

mailto:Steven.Renders@thinkaboutit.be

